Zero-field Splitting and Local Lattice Distortions for Fe^{3+} Ions in Some I_b -III $_b$ -VI $_2$ Semiconductors

Wen-Chen Zheng^{a,b,d}, Hui-Ning Dong^{a,c}, Sheng Tang^a, and Jian Zi^{b,d}

^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

^c Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, P. R. China

^d Surface Physics Laboratory (National Key Lab), Fudan University, Shanghai 200433, P. R. China

Reprint requests to Prof. W.-C. Z.; Fax: +86-28-85416050

Z. Naturforsch. **59a**, 100 – 102 (2004); received April 17, 2003

The EPR zero-field splitting D for Fe^{3+} ions in some I_b -III $_b$ -VI $_2$ semiconductors is calculated with the superposition model. The calculated D values, when using the local rotation angles $\tau(Fe^{3+})$ for Fe^{3+} in $CuGaS_2$ and $AgGaS_2$ crystals, are consistent with the observed values, whereas for Fe^{3+} in $CuAlS_2$ crystal they are not. The calculated results are discussed. The local lattice distortions except the local rotation angles τ for Fe^{3+} in $CuAlS_2$ are suggested.

Key words: Electron Paramagnetic Resonance; Local Lattice Distortion; Superposition Model; Fe³⁺; CuMS₂(M = Al, Ga, In); AgGaS₂.

1. Introduction

I_b-III_b-VI₂ semiconductors have attracted much interest as new optoelectronic, luminescent and solarcell materials [1-3]. These semiconductors are ternary analogues of II-VI binary compounds. Their crystal structure is derived from the zincblende structure by replacing the zinc ions by ions of group Ib and IIIb [4]. Each type of metal ion is surrounded by a tetragonally distorted anion tetrahedron. This distortion is related to a clockwise or counter-clockwise rotation of the anion tetrahedron by an angle $\pm \tau_{\rm I}$ (or $I_{\rm III}$) around the C_4 axis. Transition metal and rare-earth impurity ions in these semiconductors may occur at Ib and IIIb sites. Since these impurities can strongly influence the optical and electric properties of these semiconductors, many spectroscopy methods have been applied to study these impurity centers. For example, the EPR spectra of the Fe³⁺ ion, one of the major trace impurities, on the trivalent (III_b) metal sites in CuAlS₂, CuGaS₂, CuInS₂ and AgGaS₂ were measured, and the zero-field splittings D for Fe³⁺ in these crystal were determined [5, 6]. By analyzing the magnetic site splitting of Fe³⁺-singals in EPR spectra, the local rotation angle $\tau(\text{Fe}^{3+})$ of the anion tetrahedron surrounding the Fe3+ ion in CuAlS2, CuGaS2, and AgGaS2 was also determined [5,6]. The local angle $\tau(\text{Fe}^{3+})$ in these Fe³⁺-doped crystals is quite different from the corresponding angle $\tau(Me^{3+})$ in the pure (or host) crystal [6] (see Table 1). No theoretical studies for these zero-field splittings D (particularly the unusually large value of D for Fe³⁺ in AgGaS₂, the sulfur arrangement around the trivalent cation in pure AgGaS₂ being almost an ideal tetrahedron) were made until now. In addition, the other local lattice distortions, except the local rotation angle for these Fe³⁺ centers, were not studied by means of EPR spectra. Since the zero-field splitting of a paramagnetic ion in crystals is sensitive to its immediate environment, in this paper we study the zero-field splitting and the local lattice distortions for Fe³⁺ centers in I_b -III $_b$ -VI $_2$ semiconductors by the superposition model [7].

2. Calculations

The superposition model [7] is a powerful tool in explaining zero-field splitting of $3d^5$ ions and in gaining useful information on the local geometry of these ions in crystals [8–10]. From the model, the zero-field splitting D for a $3d^5$ ion in a tetragonally distorted tetrahedron can be written as [7]

$$D = 2\bar{b}_2(R)(3\cos^2\theta - 1),\tag{1}$$

where θ is the angle between the impurity-ligand

Table 1. The host and local structural data and the intrinsic parameter $\bar{b}_2(R)$ for Fe³⁺ in I_b-III_b-VI₂ semiconductors.

-	CuAlS ₂	CuGaS ₂	CuInS ₂	AgGaS ₂
$\tau(\text{Me}^{3+})$ [6]	2.1(4)°	2.6(6)°	−3.8(7)°	6.9(6)°
$\tau(\text{Fe}^{3+})^{\text{a}}$ [6]	$-5.1(1)^{\circ}$	$-5.15(10)^{\circ}$		$-10.9(2)^{\circ}$
$R_{\rm H} (\rm \AA) [6]$	2.239(10)	2.235(15)	2.517(20)	2.235(15)
R(A)	2.304(10)	2.245(15)	2.432(20)	2.245(15)
η [6]	0.979	0.979	1.007	0.895
θ (host) [6]	54.35 (15)	54.10 (25)	56.45 (30)	54.85 (25)
θ (loc.)	57.87 (5)	58.06 (6)		63.35 (12)
$\bar{b}_2(R)$ (cm ⁻¹)	-0.50(2)	-0.58(2)	-0.36(2)	-0.58(2)

^a The sign of τ (Fe³⁺) was not given in [6].

bonding length R and the C_4 axis. $\bar{b}_2(R)$ is an intrinsic parameter which depends the distance R by the power-law $\bar{b}_2 \propto R^{-t_2}$ [7]. For the Fe³⁺ ion, $t_2 \approx 7 \pm 1$ [8]. According to [11], we have

$$\bar{b}_2(R) \approx -\frac{16}{9}G_{11},$$
 (2)

where G_{11} is the spin-lattice coupling coefficient for a 3d⁵ ion in a regular tetrahedron [11]. For the Fe³⁺-S²⁻ combination, from the uniaxial dependence of EPR spectra of ZnS:Fe³⁺ [12], one can obtain $G_{11} \approx -0.93(1) \, \mathrm{cm}^{-1}$. Thus, we have

$$\bar{b}_2(R) \approx -0.52(1) \text{ cm}^{-1},$$
 (3)

where R is the impurity-ligand distance in the ZnS:Fe³⁺ crystal. Generally, R in doped crystals is different from the corresponding metal-ligand distance $R_{\rm H}$ in the host (or pure) crystal and can be approximately estimated by the formula [13]

$$R = R_{\rm H} + (r_{\rm i} - r_{\rm h})/2,$$
 (4)

where r_i and r_h are the ionic radii of the impurity and the replaced host ion, respectively. For ZnS:Fe³⁺, $R_H \approx 2.342$ Å [14], $r_i(\text{Fe}^{3+}) \approx 0.64$ Å and $r_h(\text{Zn}^{2+}) \approx 0.74$ Å [14], thus $R \approx 2.292$ Å. For CuAlS₂, CuGaS₂, CuInS₂, and AgGaS₂ crystals, $r_h(\text{Al}^{3+}) \approx 0.51$ Å, $r_h(\text{Ga}^{3+}) \approx 0.62$ Å and $r_h(\text{In}^{3+}) \approx 0.81$ Å. Thus from (4) the distance R for Fe³⁺ in these crystals can be obtained as collected in Table 1. From the above power-law, $\bar{b}_2(R)$ for Fe³⁺ in these crystals can be estimated and is also shown in Table 1.

The angle θ in I_b -III $_b$ -VI $_2$ semiconductors can be calculated by the equation

$$\cos \theta = \frac{\eta}{\sqrt{16(x - \frac{1}{2}) + 1 + \eta^2}},$$
 (5)

Table 2. The zero-field splittings D (in 10^{-4} cm⁻¹) for Fe³⁺ ions in I_b -III $_b$ -VI $_2$ semiconductors.

	CuAlS ₂	CuGaS ₂	CuInS ₂	AgGaS ₂
Cal.a	-190(80)	-365(140)	600(140)	65(150)
Cal.b	1510(150)	1860(100)		4600(200)
Cal.c	920(60)			
Expt. [5, 6]	900(1)	1886(1)	990(2)	4871(2)

^a Calculated from the host values of $\tau(Me^{3+})$ and η . ^b Calculated from the host value of η and the local value of $\tau(Fe^{3+})$. ^c Calculated from the local values of $\tau(Fe^{3+})$ and η .

where $\eta = \frac{c}{2a}$ (a and c are the lattice constants, the η values for the four I_b -III $_b$ -VI $_2$ semiconductors are collected in Table 1). x is the atomic position parameter which is related to the rotation angle τ by the formula [5]

$$x = \frac{3tg\tau + 1}{4(1 + tg\tau)}. (6)$$

Thus, from the rotation angle τ and the value of η , the angle θ and hence the zero-field splitting D for Fe³⁺ in the above semiconductors can be calculated. The calculated angels θ are shown in Table 1, and the calculated values of splitting D by using the local rotation angel $\tau(\text{Fe}^{3+})$ and those by using the corresponding angle $\tau(\text{Me}^{3+})$ in pure crystals are compared with the observed values in Table 2.

3. Discussion

1. From Table 2, it can be found that for Fe³⁺ in $CuGaS_2$ and $AgGaS_2$, the calculated splitting D using the host value of η and the local value of $\tau(\text{Fe}^{3+})$ is consistent with the observed value, whereas the calculated D using the host $\tau(Me^{3+})$ disagrees with the observed value. Considering that the ionic radii of the impurity Fe³⁺ ($r_i \approx 0.64 \text{ Å}$ [14]) and the replaced host ion Ga^{3+} ($r_h \approx 0.62 \text{ Å}$ [14]) are very close to each other, the other local lattice distortions related to the bonding length R (see Table 1) and the value of η can be regarded as very small. So, the above calculated results using the local $\tau(\text{Fe}^{3+})$ and host η can be viewed as suitable and the zero-field splittings D for the Fe³⁺ in CuGaS₂ and AgGaS₂ are explained reasonably. The unusually large zero-field splitting D for AgGaS₂:Fe³⁺ occurs because the local rotation angle $\tau(\text{Fe}^{3+})$ is opposite in sign and larger in magnitude than the corresponding host angle $\tau(Me^{3+})$, and so it results in a very large tetragonal distortion of the anion tetrahedron (note: the tetragonal distortion can be characterized by

- $|\Delta\theta| = \theta \theta_0$, where $\theta_0 \approx 54.74^\circ$, the angle in a regular tetrahedron). In passing, the tetragonal distortion of the anion tetrahedron in the host AgGaS₂ is indeed very small (see Table 1), and so the calculated splitting *D* using the host value, is also very small (see Table 2).
- 2. For CuAlS₂:Fe³⁺, however, the calculated splitting D, by using the local $\tau(\text{Fe}^{3+})$ and the host η agrees poorly with the observed value (see Table 2). It is astonishing that the host values of η , R_{H} , $\tau(\text{Me}^{3+})$ and the local value of $\tau(\text{Fe}^{3+})$ for CuAlS₂:Fe³⁺ are close to those for CuGaS₂:Fe³⁺ (see Table 1), but the experimental value of D in CuAlS₂:Fe³⁺ is only half of that in CuGaS₂:Fe³⁺. The reasons, in our opinion, may be because in CuAlS₂:Fe³⁺ the ionic radius ($\approx 0.64 \text{ Å} [14]$) of the impurity Fe³⁺ is much larger than that ($\approx 0.51 \text{ Å} [14]$) of the replaced host ion Al³⁺. So, we suggest that not only the local rotation angle $\tau(\text{Fe}^{3+})$, but also the local values of R (see Table 1)
- J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications, Pergamon Press, New York 1975.
- [2] A. Zunger, S. Wagner, and P.M. Petroff, J. Elect. Mater. 22, 3 (1993).
- [3] I. Aksenov and K. Sato, Appl. Phy. Lett. 61, 1063 (1992).
- [4] R. W. G. Wyckoff, Crystal Structures, Vol. 2, John Wiley and Sons, New York 1967.
- [5] J. Schneider, A. Rauber, and G. Brandt, J. Phys. Chem. Solids 34, 443 (1973).
- [6] G. Brandt, A. Rauber, and J. Schneider, Solid State Commun. 12, 481 (1973).
- [7] D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).

- and η are different from the corresponding host values in CuAlS₂:Fe³⁺ crystal. If we change η from 0.979 to 1.025, the calculated D value is consistent with the observed value (see Table 2). So, we suggest the local value $\eta \approx 1.025$ for CuAlS₂:Fe³⁺.
- 3. For CuInS₂:Fe³⁺ the magnetic site splitting of the Fe³⁺-singals could not be resolved, and so the local rotation angle $\tau(\text{Fe}^{3+})$ could not be determined because of the large inhomogeneous broadening of the EPR lines, resulting from the nuclear moments of the In¹¹⁵ ligand [6]. So, the calculated splitting D, using the local $\tau(\text{Fe}^{3+})$, can not be given. Interestingly, the calculated splitting D using the host values of $\tau(\text{Me}^{3+})$ and η is close to the observed value (see Table 2). However, since the impurity Fe³⁺ is smaller than (≈ 0.81 Å) the host In³⁺, we presume that the local values of $\tau(\text{Fe}^{3+})$ and η are slightly different from the corresponding host values. This point remains to be further studied.
 - [8] M. Heming and G. Lehmann, in: Electronic Magnetic Resonance of the Solid State (Edited by J. A. Weil), The Canadian Chemical Society, p. 163, Ottawa 1987.
 - [9] K. A. Muller, J. Phys. (pairs) 42, 551 (1995).
- [10] W. C. Zheng, J. Phys. Chem. Solids 56, 61 (1995).
- [11] W. C. Zheng, Phys. Rev. B 42, 826 (1990).
- [12] C. Blanchard, R. Parrot, and D. Boulanger, Phys. Lett. A 36, 179 (1971).
- [13] W. C. Zheng, Physica B 215, 255 (1995).
- [14] R.C. Weaast, CRC Handbook of Chemistry and Physics, CRC Press, Boca Ranton, Florida 1989, P.B-190 and P.E.-164.